Hosoya Polynomials of Steiner Distance of Complete m-partite Graphs and Straight Hexagonal Chains(*)
نویسندگان
چکیده
منابع مشابه
Hosoya polynomials of random benzenoid chains
Let $G$ be a molecular graph with vertex set $V(G)$, $d_G(u, v)$ the topological distance between vertices $u$ and $v$ in $G$. The Hosoya polynomial $H(G, x)$ of $G$ is a polynomial $sumlimits_{{u, v}subseteq V(G)}x^{d_G(u, v)}$ in variable $x$. In this paper, we obtain an explicit analytical expression for the expected value of the Hosoya polynomial of a random benzenoid chain with $n$ hexagon...
متن کاملWiener Polynomials for Steiner Distance of Graphs
In this paper, the Wiener polynomials Wn(G;x) for some special graphs G including path graphs and cycle graphs are obtained. Moreover, for vertex-disjoint connected graphs G1 and G2, formulas for the Wiener polynomials of Steiner n-distance of compound graphs G1•G2 and G1:G2 are obtained in terms of those polynomials for G1and G2.
متن کاملThe Hosoya polynomial decomposition for hexagonal chains
For a graph G we denote by dG(u, v) the distance between vertices u and v in G, by dG(u) the degree of vertex u. The Hosoya polynomial of G is H(G) = ∑ {u,v}⊆V (G) x dG (u,v). For any positive numbers m and n, the partial Hosoya polynomials of G are Hm(G) = ∑ {u, v} ⊆ V (G) dG (u) = dG (v) = m xdG (u,v), Hmn(G) = ∑ {u, v} ⊆ V (G) dG (u) = m, dG (v) = n xdG (u,v). It has been shown that H(G1) − ...
متن کاملhosoya polynomials of random benzenoid chains
let $g$ be a molecular graph with vertex set $v(g)$, $d_g(u, v)$ the topological distance between vertices $u$ and $v$ in $g$. the hosoya polynomial $h(g, x)$ of $g$ is a polynomial $sumlimits_{{u, v}subseteq v(g)}x^{d_g(u, v)}$ in variable $x$. in this paper, we obtain an explicit analytical expression for the expected value of the hosoya polynomial of a random benzenoid chain with $n$ hexagon...
متن کاملSome Algebraic and Combinatorial Properties of the Complete $T$-Partite Graphs
In this paper, we characterize the shellable complete $t$-partite graphs. We also show for these types of graphs the concepts vertex decomposable, shellable and sequentially Cohen-Macaulay are equivalent. Furthermore, we give a combinatorial condition for the Cohen-Macaulay complete $t$-partite graphs.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: AL-Rafidain Journal of Computer Sciences and Mathematics
سال: 2008
ISSN: 2311-7990
DOI: 10.33899/csmj.2008.163953